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A wake model for free-streamline flow theory 
Part 2. Cavity flows past obstacles of arbitrary profile 

By T. YAO-TSU W U  AND D. P. WANG 
K6rmOn Laboratory, California Institute of Technology 

(Received 6 June 1963) 

In Part 1 of this paper a free-streamline wake model was introduced to treat the 
fully and partially developed wake flow or cavity flow past an oblique flat plate. 
This theory is generalized here to investigate the cavity flow past an obstacle of 
arbitrary profile at an arbitrary cavitation number. Consideration is first given 
to the cavity flow past a polygonal obstacle whose wetted sides may be concave 
towards the flow and may also possess some gentle convex corners. The general 
case of curved walls is then obtained by a limiting process. The analysis in this 
general case leads to a set of two functional equations for which several methods 
of solution are developed and discussed. 

As a few typical examples the analysis is carried out in detail for the specific 
cases of wedges, two-step wedges, flapped hydrofoils, and inclined circular arc 
plates. For these cases the present theory is found to be in good agreement with 
the experimental results available. 

1. Introduction 
The general theory of potential flows past curved obstacles with a free boundary 

formation has been long recognized as an interesting but difficult mathematical 
problem. The questions of construction, calculation, as well as existence and 
uniqueness have intrigued many outstanding hydrodynamicists and mathemati- 
cians alike. The celebrated work of Levi-Civita (1907) for the infinite cavity case 
has provided the basis for the general theory by introducing a convenient para- 
metrization of the flow by which the solution is expressed in terms of an arbitrary 
analytic function in a half unit circle, and thereby removing the unknown free 
boundary from the question. Levi-Civita’s representation has been further 
advanced by Villat (19 11) who formulated the flow problem in terms of functional 
integral equations which have played a central role in the existence theory and 
the actual construction of the solution. Detailed discussions of these fundamental 
articles and the related developments can be found in the recent literature on this 
subject, for example, Gilbarg (1960), Birkhoff & Zarantonello (1957). 

It has been noticed that perhaps the most complex and difficult problem of all 
is the actual computation of the solution. Some practical aspects of these diffi- 
culties have been discussed by Birkhoff & Zarantonello (chapter 9). This problem 
is largely unavoidable since for cavity flows past curved obstacles, even with 
infinite cavities, numerical methods seem to be the only means of obtaining 
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an accurate solution from the exact theory. While several finite-cavity flow 
models have also been considered together with the corresponding functional 
equations of Villat’s type (see, e.g., Gilbarg 1960), the incorporation of these 
models only magnifies the complexities of the computation. One approximate 
method in common use is to make the continuous curvature equation discrete 
by a polynomial representation and to solve the resulting set of equations by 
direct iteration. However, this iteration has been shown to diverge for large 
values of a certain parameter M (which relates the scale of potential and that of 
the physical plane); for such cases a more elaborate averaged iteration has been 
introduced by Birkhoff, Goldstine & Zarantonello (1954). Froin our experience, 
the difficulties become particularly noticeable in the case of thin curved barriers 
held at  small incidences to the flow since the total variation of the integrand in the 
functional equations increases rapidly with decreasing angle of attack. Un- 
fortunately, this is also the case of considerable interest from the viewpoint of 
practical applications, such as cavitating hydrofoils and stalled airfoils. In 
short, it  seems that so far none of the general iteration methods have been 
rigorously proved to converge, and theoretical estimates of error are still lacking. 

The main objectives of this paper are twofold: (1)  to develop an exact 
theory for the general case of arbitrary body profile and arbitrary cavitation 
number by adopting a rather simple wake model and by using a different para- 
metrization, (3 )  to examine various numerical schemes which can be applied 
uniformly in the incidence angle and the cavitation number. 

In part 1 of this paper (Wu 1962) a free-streamline wake model was intro- 
duced to treat the flow past an oblique flat plate with a fully or partially developed 
wake (or cavity) formation. According to this model the wake flow is approxi- 
mately described in the large by an equivalent potential flow past the body with 
an infinitely long wake which consists of a near-wake of constant under-pressure 
and a far-wake trailing downstream. The pressure increases continuously back 
to its free-stream value along the far-wake boundary which is assumed to form 
a branch slit of an unknown shape in the hodograph plane. 

This theory will now be generalized to evaluate the wake (or cavity) flow past 
an obstacle of arbitrary profile a t  arbitrary cavitation number. Consideration is 
first given to a polygonal obstacle whose wetted sides may be concave towards 
the flow and may also possess some gentle convex corners. The parametric plane 
of the flow is chosen to be in a half unit circle, with the circular arc corresponding 
to the constant pressure free boundary and the diameter to the wetted surface in 
such a way that this plane becomes the hodograpli as the polygon is degenerated 
to a flat plate. The general case of curved walls is then deduced by a limiting 
process. The analysis in this general case leads to a set of two functional equations 
which are quite similar to Villat’s equations. These equations immediately 
provide the exact solution of a wide class of ‘inverse problems’. While the 
general direct problems are still difficult to solve exactly, the computation of the 
present theory is, however, not further complicated by non-vanishing cavitation 
numbers (aside from the determination of an additional scalar parameter). 
Several numerical methods for the general purpose have been developed here, 
some of which have already been applied with success. 
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In order to exhibit some salient features of cavity flows past curved obstacles, 
such as the effects of camber, cavitation number, incidence angle, and so forth, as 
well as to achieve a sound grasp of the convergence of various numerical schemes, 
the analysis and the subsequent computation have been carried out in detail for 
several typical examples: wedge, two-step wedge, hydrofoil with a flap, and 
inclined circular arc plate. The methods adopted have been found to converge in 
every case tried. Furthermore, in these cases the present theory is found to be in 
good agreement with the experimental results available. 

2. Cavity flows and wake flows past a polygonal obstacle 
We consider first the steady, plane, potential flow of an incompressible fluid 

past a polygonal obstacle with a wake or cavity formation in such a way that the 
N sides of the polygon are wetted and the flow is separated from fixed leading and 
trailing edges A and B, forming two free streamlines ACI and BC'I, as shown in 
the physical plane z = x + iy  of figure 1. The free stream a t  infinity is inclined at 
an angle u with the x-axis which may be chosen (but not necessarily) to coincide 
with the chord AB. Let zo = z,, zl, z2,  . . . , zN = zB be the vertices of the polygon; 
and let ( 1  + ek)  7~ be the exterior angle (on the cavity side) subtended by the 
consecutive sides at zk ,  k = 1 , 2 ,  . . . , ( N  - 1). 

The polygonal wall may be concave towards the flow and may also possess 
some gentle convex corners so long as the resulting flow configuration provides 
a valid approximation of the actual physical flow. It is noted that the potential 
flow at such a convex corner, if not a stagnation point, must be singular there. 
Whether the flow is actually separated or not from such convex corners, however, 
should be investigated by including the relevant real fluid effects such as the 
viscous boundary layer at the wall, convection and diffusion of dissolved gases, as 
well as other properties of incipient cavitation. These real fluid effects are rather 
complicated and difficult to be taken into an accurate account; they will not be 
further discussed in this work. In  the present formulation the flow around such 
convex corners may be regarded as an approximation to the actual case in which 
either the real fluid effects under the circumstances keep the flow from being 
separated or there exists only a small separated bubble with an immediate 
reattachment to the solid surface, so that no serious error results from 
neglecting such detailed local structure of the flow. To permit such gentle con- 
vex corners to remain wetted in the cavity flow is essential when we later 
generalize this analysis by a limiting process for obstacles of arbitrary profile. 
With this additional degree of freedom, ek is positive or negative according as the 
boundary at  xk is concave or convex towards the flow. It should be emphasized, 
nevertheless, that due caution must be exercised and the possibility of change 
in the basic flow pattern considered (for small enough u the flow in figure 1 
may change the separation point from B to z3, thus leaving z,B inside the 
cavity). 

Adopting the same notation as in Part 1, we have the complex potential 
f ( z )  = 4 + i$, and the complex velocity 

w(z) = df /dz  = u-iv = qemis. 
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FIGURE 1. The free-streamline model for the wake flow past a polygonal 
obstacle and its conformal mapping planes. 

The free stream has velocity U and incidence angle a, so 

w = Ue--b at z = 00. ( 2 )  

The general description of the present wake flow model has been given in 
Part 1, which may be summarized here for the convenience of subsequent applica- 
tion. The part AC and BC' of the free streamlines form the lateral boundary of 
a near-wake of constant pressure 

p = p c  < p a  on AC and BC', (3) 
p ,  being the free-stream pressure. From this part onward p varies continually 
and monotonically from p c  to p ,  along the far-wake boundary, CI and C'I .  It is 
further assumed that fc = fc, wc = wc'. (4 ) 
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Moreover, the images of the free streamlines CI and C'I are assumed to form 
a branch slit of undetermined shape in the w-plane (the hodograph-slit condition). 
The Bernoulli equation of the external flow is 

p+jjpq2 = pm++pU2 = p,++pq:, ( 5 )  

where qc is the constant value of q along AC and BC'. With qc normalized to unity, 
we have 

qc = 1, u = (l+c)-i, 

where 0- = ( P c o - P c ) / ( w 2 ) ?  ( 6 b )  

CT being the wake under-pressure coefficient, or the cavitation number for cavity 
flows, Condition (3) is written for the case of full wake flow; for the partial wake 
flow case (see Part 1 for further details) the constant pressure portion BC' behind 
the trailing edge B then disappears. 

For the present problem we introduce the [ and t parameter planes by 

where A is a positive real constant and the complex constant is the image point 
(yet undetermined) of z = co. The flow regions in the 5 and t-planes are shown in 
figure 1. The local conformal behaviour at C and C' requires that 

df/d<= 0(15-~~ l )  as 15-61+0, 
from which it follows that 

Cc = Cc, = Re[o. 

Moreover, the line segments CI, C'I and DI are seen from (7) to be straight lines 
parallel to the Im [-axis. The fully cavitating flow is again specified by the condi- 
tion that the point C' falls downstream of the trailing edge B, or 

[c = Rec0 < 1. (9 b )  

When the numerical result gives Re go > 1, the flow may be supposed to have 
undergone transition to become partially cavitating. 

Equations (7) and (8) can be combined to give 

f ( t )  = At2[(t-t0)(t-to) (t-tol) (t-t<1)]-1, (10) 
where to, from (8) ,  is given by to = c0 - ([g - l)&. The use of the variable t is sug- 
gested by the analysis of Part 1 : here t plays the role of the variable w of the wake 
flow past an oblique flat plate (see Part 1) so that with t =  w, (10) provides the 
required solution of the flat-plate problem. 

The solution of the present problem is seen to be best represented in the para- 
metric form f = f ( t )  and w = w(t). We proceed now to determine the latter part 
w = w(t). Let the points T ~ , T ~ ,  . . . , T + ~  on the real diameter of the t-plane 
( -  1 < T~ < T~ < ... < T ~ - ~  < 1) correspond to the vertices zl, x 2 ,  ..., zNP1 of the 
wall. We further let the stagnation point D, a t  which w = 0 ,  be chosen at t = 0. 
Now, as the point z moves along the polygonal boundary from A to B, 
Im (log w) = arg w remains constant on every straight segment, jumps by (ekn-) 
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as x moves across the vertex x k ,  and jumps by 7~ as x goes over the stagnation 
point. Furthermore, along AC and BC', where It1 = 1, we have 

Re (log w) = log p, = 0. 

From these two conditions one sees by inspection that 

where Po is the angle made by the leading segment with the x-axis, positive in the 
counterclockwise sense. It is obvious that the above w satisfies the conditions on 
arg w over the solid boundary. Furthermore, with - 1 < r < 1 and 6 real, the 
conformal transformation 

T = exp (is) (t  - r ) / ( r t  - 1) (llcr) 

maps the circle It1 = 1 on IT] = 1, and we have JTJ < 1 when It] < 1.  This 
establishes the solution (1 1). In  particular, when Po and all ek vanish, w and t 
become identical, leaving (10) as the known solution of the flat-plate problem 
(see Part 1). 

Equations (10) and (11) give the parametric solution f = f ( t ) ,  w = ~ ( t ) .  The 
solution is completed when the physical x-plane is determined from 

1 df 
-1 w(t) at x(t) = 1 -- --dt. (12) 

The above integral cannot in general be integrated in a closed form. 
It is noted that the solution given by (lo), (1  1) and (12) contains ( N  + 1) para- 

meters A ,  to, 71, . . . , TN-1 ( N  + 2 real parameters as only to is complex) which can be 
determined by the following consideration. First, at  x = 03, or t = to, application 
of condition (2) to (1 1) yields 

The region of Ito\ for the particular case of all ek > 0 can be seen from (13), 
( l l a )  to be 

Furthermore, the length of the kth segment is 

U < It,\ < 1, if all elc > 0. (13a) 

( 14) 

Finally, we also have 

where 1 is the chord length and a, the inclination of the chord. Equations (13) and 
(14) form ( N  + 1) equations, which are in general non-linear and transcendental, 
for the ( N  + 1) parameters A ,  to, rl ,  . . ., rN-l. For further discussion on the deter- 
mination of these parameters, we distinguish between the following two cases. 
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3. The direct and inverse problem; numerical iteration methods 
The original physical or direct problem is specified with prescribed geometry 

(all I, and e, given) and flow configuration (a and the cavitation number CT 

or U given), there being a total of (2N+ 1) direct physical parameters, 

P(a;  g; I,, ..., ZAT; c1, ..., 6+1). ( 1 6 a )  

A wake flow past a N-sided polygon can therefore be represented by a point P in 
a (2N + 1)-dimensional space with the above co-ordinates. The region of these 
co-ordinates permissible for our physical problem may be described as 

R(la1 < in; v > 0;  I, > 0; S, < ek < l),  (1Gb) 

where SIC, the lower limit of e,, may be zero or may assume some small negative 
value (in order to render a valid approximation of the actual motion, as explained 
earlier). Aside from this qualifying condition, no definite lower bound of the 
negative value can be stated in general for 8,. If, however, 

Sfc> O , k =  1,2. . . ,N-l ,  

then the wetted surface is concave to the flow. 
On the other hand, our solution given by ( lo)-(  14) also defines a wake flow past 

a N-sided polygon which can be represented by (2N + 1) ‘inverse flow’ para- 

(17n)  
meters P’(A; to (complex); T ~ ,  ..., T ~ - ~ ;  el, .. ., eNPl ) ,  

with the corresponding region 

R’(A > 0 ;  If,l < 1, -n < argt, < 0; - 1  < T~ < ... < T ~ - ~  < 1; S, < e, < 1) .  

(17 b )  

For the more restricted case of 8, = 0 in (16  b )  and (1 7 b )  the corresponding region 
will be denoted by R, and R; . For definiteness some statement in the sequel will 
be made on the basis of the region R, and R; since the relaxed case when ek may 
assume small negative values must eventually depend on experimental verifi- 
cation. 

Let us consider the inverse problem by choosing a point P‘ within the region 
R;. Then, since  IT^,) < 1 and It,[ < 1,  it follows from (13) that 

so that CT = (U-2- 1) > 0. Equating the argument of (13), we obtain the 
incidence (a  -Po) of the leading segment 

AT-1 

li=l 
.-Po = -argt,+ elJarg(Tkto- 1 ) -  arg(to-7,)]. (18b) 

The entire configuration is then fixed (up to a common scale factor A) ,  with the 
length 1, of every segment given by (14). Therefore, to each P‘ in R; there 
corresponds a single P i n  R, . I n  this sense we may assert that the mathematical 
solution of an inverse problem exists and is unique. 
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In the direct problem with prescribed P, there are ( N +  1)  unknown para- 
meters A;  to; rl, . . . , T ~ - ~ ,  which have to be determined from the ( N  + 1) transcen- 
dental equations (13) and (14). These equations are in general very difficult to 
solve directly. The existence and uniqueness consideration for the original 
physical problem is to establish the converse statement that to each point P there 
corresponds one and only one P', or in other words that the ( N +  1)  non-linear 
equations (13) and (14) possess a unique solution of the ( N  + 1) unknown para- 
meters for any prescribed values of the physical parameters in P. The problem of 
existence and uniqueness may be treated by adopting the idea of 'local unique- 
ness' as used by Weinstein (1924, 1927, 1929), and Leray (1934, 1935) for similar 
problems in the theory of free-boundary flows. The details of such considerations, 
however, will not be pursued further in this work. 

The above consideration of the inverse problem provides a basis of constructing 
approximate methods for the direct physical problem. We have essentially 
established two such methods: (i) an integral iteration scheme, and (ii) a dif- 
ferential perturbation approximation, both depending on a known basic flow 
as the reference. The difference between the actual flow and the basic flow need 
not be very small for the first method as long as the iteration converges, whereas 
this difference is assumed small for the second method to be effective. The 
integral iteration for polygonal obstacles is best presented as a special case of the 
general method for curved profiles; this is done in $5.1. We present below the 
differential perturbation method as it may also bear some interest regarding the 
problem of existence and uniqueness. 

Suppose that a basic flow P(a; a; I,, . . . , I,; el, . . , eN-J is given by (13) and (14) 
with prescribed parameters P'(A ; to; rl, . . . , T~-,; el, . . . , e,v-l). Let these para- 
meters be given variations SA, 8V, Sol,, 8r7<, 8ek, where to = Ve-iao. Then the 
corresponding variations of the physical parameters are given by 

8€k = 8€, (k = 1,2,  ..., N-l) ,  (19b) 

( 1 9 C )  

wherein (19 n) , j  = 1,2 , .  . . , N .  In  (19c) Umay be replaced by a since a = ( V 2  - 1). 
The coefficients of the above set of (2N + 1) equations can be readily deduced by 
differentiation of (13) and (14); their explicit expressions will not be given here. 

Conversely, if a physical flow is given by Pyc (a; a; I, + 81,; ek -I- 8eJ which in 
turn may be regarded as a variation of the basic flow at fixed a! and a, then the 
corresponding variation of the inverse parameters can be obtained by solving the 
(2N+ 1) linear equations (19) with the known quantities 811L7 Se7<, 8U = 0, Sol = 0, 
provided that the Jacobian 

a(@; U ;  11, ..., 1,; €1, . . . , c N - J / a ( A ;  V ;  " 0 ;  71, . . . ,TN-~;  €1, . . . , E N - J  (20) 
is non-vanishing. The last statement would also imply existence and uniqueness. 
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The above perturbation theory can be applied to construct an iteration scheme 
as follows. We combine the so determined variation (SA, SV, Sol,, Sr,, Se,) with the 
original reference flow to provide a new reference flow P;(A+SA, V+SV,  
01, + 6a,, rk + Srk, ek + SE,) which, by using (13) and (14) as an inverse problem, 
provides in turn a new physical flow PI (0, dl), Zfcl), @). By comparison of PI 
with the given flow P* a set of new variations (Sol, 6c, 61,, a,) of the physical 
parameters is obtained, thus enabling one to proceed by repeating the process 
iteratively over and over again. Needless to say, the success of this iteration 
process depends on how fast the set Pn(dn), a(%), Zfi”), &)) converges to the pre- 
scribed physical flow. 

It may be remarked that the first reference flow need not have the same 
number N of faces.. For example, when all the e,’s are small, the cavity flow past 
the flat plate spanning along the chord AB can be used as the basic flow, in which 
case the complex velocity w of the basic flow coincides with t ,  and r l ,  . . . , rNP1 of 
the basic flow become the image in the t-plane of those points on the flat plate 
which are a t  the same length apart as the vertices of the given polygon (in other 
words, 61, are all chosen to be zero for the first iteration). 

4. Obstacles with arbitrary profile; the functional equations 
The preceding results can be readily extended to contain the general case when 

the obstacle has an arbitrary profile. This generalization is quite straightforward 
for the case ofJixed detachment when the detachment points (in general at sharp 
corners) are assumed known. The theory can also be applied to the problem of 
smooth detachment, when the detachment points (at a smooth surface, for example) 
cannot be prescribed in advance, provided some additional appropriate condi - 
tions are imposed for their determination. The condition generally adopted for 
this type of problem is based on Villat’s criterion (1914) which requires the 
curvature of the free streamline to be finite at  the point of smooth detachment. 

Thus we presume that the free streamlines become detached from the body a t  
points A and B (with either fixed or smooth detachment) to form a wake or 
cavity, as depicted in figure 2. The wetted surface of the obstacle may be 
expressed parametrically as 

x = x(s), y = y(s) for 0 < s < S ,  (21 a) 

where S is the total arc length of the wetted surface. These functions and their 
first derivatives may be assumed Holder continuous in s for 0 < s < S. The 
inclination angle of the body surface with the x-axis is 

( 2 l h )  

Here the variation of piieed not be limited to be small as long as the resulting flow 
is supported by physical observations. The maximum variation of p, defined as the 
difference between the maximum and minimum value of p, may be taken to be 
less than jry and may be considerably smaller in ordinary cases of practical 
applications. 
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Let us consider a limiting process by which the number N of the polygonal 
faces increases beyond all bounds, the face lengths lk all tend to zero, and the 
turning angles ek all become vanishingly small except possibly a t  a finite number 
of isolated points where the obstacle has sharp corners. In  the limit as N -+ cc and 
lekJ + 0, we may rewrite (1 1) as 

N-1 

k= 1 

/----- 

FIGURE 2 .  Free-streamlines with fixed and smooth detachment from a 
solid boundary. 

and then replace the summation by an integration with respect to the continuous 
variable T ,  substituting e k n  by ( - d p )  where p(7) is the inclination angle of the 
body surface a t  the point t = T .  (The negative sign of ( - dp) is taken on account 
of the original convention of the positive sense oft+) We therefore obtain 

where clearly Po = p( - 1). It may be noted that this result includes the special 
case (1 1) for polygonal bodies when we take 

8 ( ~  - 7,J being the Dirac delta function. Integrating the integral in ( 2 2 )  by parts, 
we find that the contribution a t  the lower limit T = - 1 (where p = Po and 
log [(t - T ) / ( ~ T  - l)] = in) cancels the factor exp ( - ip,,), giving 

(23) 

The exact solution is therefore expressed parametrically as f =f ( t ) ,  uj = w(t) ,  
withf(t) given by (10) and w(t) by (22 )  or (23). As a remark, the above solution 
w(t) can also be obtained directly by the method of functional theory (see 
Appendix). 
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The form (22) is based on the curvature whereas (23), on the inclination of the 
body surface. In  fact, the curvature of a bounding streamline, defined by 
K = d8/ds ( s  being the arc length along the streamline), can be written 

(24 a) 

where w = ilogw = B+ih. ( 2 4 b )  

Hence on the body, 8 = p (or they may differ by at  most a constant), 

and on the cavity boundary where h = 0, 

( 2 5 b )  

Finally, the physical z-plane is again determined by (12 ) ,  except now w(t) is 
given by ( 2 2 )  or (23). In  particular, on the body (t real), 

(26 a)  

in which * above the integral sign signifies the Cauchy principd value. Since 
for real t ,  9 

dr 
= 0, ~ SI -1 (7 - t )  (7t - 1 )  

we may also write for the points on the solid surface, or for t real, 

(2G b )  

Since da = (ds)ei8, it therefore follows from (26b)  that the arc length s(t) along 
the body surface, measured from the leading edge A ,  is 

(27) 

The above formal solution contains two arbitrary parameters A and to, and an 
arbitrary real function /3(t). They are governed by the following conditions. 
First, application of condition (2) to (23) yields 

Next, let us consider the boundary condition on the solid surface. In  the case of 
fixed detachment, the angle pis a given function of s (see (21)). However, s(t) and 
hence P(t) = P(s(t)), which appear in (27) and (28), are not known apriori. Thus 
the right-hand side of (27) and (28) may be regarded as two integral operators 
Y,[s(t), /3(s); to] and 9,[s ( t ) ,  p(s ) ;  to] depending on s( t ) ,  p(s) and the parameter to,  
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which provide the functional transformations of s(t) into the left-hand side 
member of (27) and (28), or symbolically, 

the right-hand sides of these equations being independent of the parameter A .  
Equations (29) and (30) are a set of functional equations for the unknowns 
s( t ;  to), P(t)  and to. Finally, the parameter A is fixed by the physical scale of the 
total arc length 

s(1)  = 8. (31) 

For the problem of smooth detachment, each smooth-separation point becomes 
an additional unknown for which another condition must be imposed for its 
determination. We may adopt the finite curvature condition that 

do  
- = 0  at a t  t = T 1 ,  ( 3 2 a )  

where w = ilogw, and where t = - 1 (or 1) is applicable when the smooth 
detachment occurs at A (or B). This can be seen as follows. From the local con- 
formal behaviour of f ( t )  at t = 9 1 it  is obvious that df/dt vanishes like ( t  & 1) as 
( t  +_ 11 -+ 0. Therefore the curvature of the free streamline (K, = d o / d f ,  see ( 2 5 b ) )  
will be infinite at the detachment unless dwfdt also vanishes there. In  the latter 
case it follows from Villat’s alternative (Villat 1914) that the curvature of the 
free streamline at detachment coincides with that of the body. By using (23), 
condition (32a) can further be written 

(32b) 

which must be used together with the previous conditions to determine P(s(t)), 
to and A .  

The above considerations provide a means of constructing inverse and approxi- 
mate solutions of the cavity problem. For the inverse problem we begin with an 
adequate choice of to and the function P(t), then a and U (or cr) can be calculated 
directly from (28), and the geometrical configuration by quadrature from (26). 
Again, the body profile varies for different a and cr. The exact solution of an 
appropriate inverse problem can also be used as the reference flow for approxi- 
mate solutions of the original physical problem. 

5. Numerical iteration and approximate methods 
The general profile of the curved obstacle may admit ( N -  1) isolated sharp 

corners across each of which (say a t  zk )  the inclination P jumps by ( - sLn) so that 
we may write N - 1  

L = l  
P ( s )  = - r, (eknn) ff(s - S k )  + Y ( 4  (33) 

where sk is the arc length from A to x k ,  and H is the Heaviside step function. 
Clearly y(5) is continuous everywhere on the wetted surface. We present in the 
following two numerical schemes, the first one being entirely general, whereas the 
second is characteristic for a particular category of profiles. 



Wake model for free streamlineJlow. Part 2 77 

5.1. An integral iteration method 

The following integral iteration method has been developed for the general 
purpose and has been found to be relatively simple and straightforward to apply. 
Suppose there exists a known basic flow referred to which the flow in question 
may be regarded as a (not necessarily small) perturbation. For convenience the 
basic flow may be chosen as simple as practical; for example, one may chose an 
inclined flat plate if p(s) is everywhere small, or a two-sided wedge spanning the 
same end points A and B if p(s )  is moderate or large. The exact solution of the 
basic flow will be denoted by 

p = P'O)(s), s = s y t ;  t ( O ) ) ,  t p ,  A@). (34) 

The function p(O)(s) is of course different from p(s) of (33). 
Equations (27) and (38) may be rewritten for the iteration scheme as 

Here P(s(n)(t)) assumes the corresponding value of the prescribed p(s)  with 
s = dn)(t) for n = 0,1,2, ...,s(O)(t) being provided by the basic flow. Other than 
this role, the inclination p(O)(s) of the basic flow never enters the iteration calcu- 
lation explicitly. Finally, the physical scale factor A(n) of each n will be so chosen 
that 

This condition ensures that the total arc length of the wetted surface in each 
iteration, including the basic flow, remains fixed (see condition (31)) so that the 
original boundary condition of the prescribed P(s)  can be applied in the entire 
interval 0 < s < S. When the set of values {tin)} and functions {sW(t)}  tend to 
definite limits as n + 00, then this iteration converges to the required solution. In  
numerical work, estimates of ( ~ ( ~ + l ) / s f ~ ) -  11 and Itbn+')/ti;") - 11 provide a good 
indication of the rate of convergence. 

In the problem of smooth detachment one also has to apply the same iteration 
procedure to the additional condition (32b) ,  use of which must yield convergent 
values of the detachment points if the solution is to be meaningful. 

It should be pointed out here that this iteration method is universal so long as 
the integral operations involved can be carried out and the process is convergent. 
It therefore includes the special case of step-jump p for polygonal obstacles. 

&)(I) = S for n = O , 1 , 2 ,  .... (39)  

5.2. Polynomial representation of P(t) 

Let us consider again the general case (33). While the determination of P(t) is 
generally complicated, the values of p are nevertheless prescribed for the fixed 
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detachment points A and B, /3( - 1)  = PA,  /3( 1 )  = PB, say. Hence from (33)  y is 
also known a t  t = & 1 ,  namely 

A - 1  

k = l  
Y A = Y ( - P ) = p A )  Y B = ? ( l ) = P B f n  3 €k- (40) 

We may next expand the continuous function y ( t )  into a power series 

which satisfies condition (40) and converges uniformly and absolutely for 
- 1 < t < 1. Furthermore, it is noted from (35) that the curvature of the solid 
surface near the detachment points is 

But it has already been noted that (dfldt) vanishes like ( 1  t )  as 11 f t [  +O. 
Therefore, as long as the curvature of the wetted surface is finite at the detach- 
ment, regardless of whether the detachment is fixed or smooth, the following two 
conditions, 

g - e = ~ ( l k t )  dt  - d t  as I l k t l - t O ,  (43a) 

must be satisfied, which, when applied to (41), yield 

Actually we can carry out the limit in (43) and apply the known curvature 
conditions at the detachment points; the result will however be omitted here. 

An approximate method is obtained by taking a truncated series in (41)  with 
M terms in m and N terms in n. For simplicity we shall describe this method for 
the special case of no sharp corners, and hence p(s)  = y(s). Substituting this 
polynomial in (27) and (28)) we obtain 

where 

I n  addition to conditions (44), (45), we have of course conditions (43b), (31) and 
(32a,) (the last one being for the smooth detachment case). 

I n  case the change of the surface inclination is sufficiently smooth over the 
entire surface, especially near the points A and B, one may regard 
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as the reference flow and derive a linear problem for the coefficients ?/I,~%. An 
appropriate number of points on the real t-axis may be chosen for application of 
condition (44). 

6. Lift and drag 
The complex force F = S + i Y is seen to be 

(1-WM)dZ = -;i.I (l-wG)-dt, dx s CABC" r at (47) 
B 

F = i I A  (p--pc)dz = -kip 

where the contour I' is C'BAC. The first term of the last integral becomes 

by integration by parts; and the complex conjugate of the second integral is 
dw / CABC' 

p 2 - _  - :ipj ?.!jZd3 = gip 
CABC' 

Now the integrands of the last two integrals are analytic and regular everywhere 
inside the contour I' except a t  the simple pole t = to. Since as t -+ to 

B Atgfo 
f(t)  = t_t ,+O(l) ,  B = ( to- to)( t~-1)( toto-1) '  

we obtain by the theorem of residues 

by using ( 2 ) .  Finally, tlze lift L and drag D are given by 

where G(t) = d log wldt, and hence for the polygonal obstacles 

1 and in general G(t) = - +- /:I [ __- (7: t ) 2  + -1 (7t - 1)' p(r)  dr. (50b) 

7. Some basic features of the free streamlines 

boundary AC and BC' of the near-wake, 
The shape of the free streamlines AC and BG' will now be determined. On the 

t = e-ix (0 < x < n), (51) 
which corresponds to 5 = 6 = cos x. Then from (23) and (24 b) 
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Let the image point of z = co be 
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t 0 -  - Ve-iao, with 0 < V < 1, 0 < a. < n, 

CO = tO+iT07 t o  = 5 ( V +  V )  Cosa,, To = 2 (T- V )  sina,, 
1 1  1 1  or 

with Ito\ < 1 for the fully developed wake flows. Then on AC and BC', 

f = *A[(<-t0)2+r;]-l. 

The curvature of AC and BC', by ( 2 5 b ) ,  is K, = dw/df, or 

Thus the curvature of AC and BC' is in general singular at  A, B, C and C'. The 
singular behaviour of the curvature at C and C', or a t  5 = to, is an intrinsic 
feature of this wake model. 

A parametric representation of the free boundary AC and BC' can be obtained 
from 

where w(<)  is given by ( 5 2 ) .  

8. Examples 
In  the preceding sections several numerical methods have been developed for 

the general purpose of evaluating the direct problems. In  order to exhibit the 
important physical effects of cavity flows past curved bodies and at the same time 
to carry out these numerical schemes, we consider in the following a few typical 
examples: (A) symmetric wedges, (B) two-step wedges, (C) flat plate with a flap, 
(D) inclined circular arc. Case (A) contains only a simple integration; the com- 
plete result is presented here for possible adoptions as a reference flow for more 
complex problems. The general methods can often be considerably simplified for 
particular cases, such as shown in (B) and (C) where a combined use of the direct 
and inverse calculations can be made very effective and powerful. As a com- 
parison, the integral iteration method has also been applied to (C). Finally, the 
circular arc problem is solved by using the integral iteration method, and the 
results compared with the available experiments. 

All the numerical computations have been programmed and carried out on the 
IBM 7090 computer at California Institute of Technology. The errors involved 
in the computations, if explicitly verified, will be stated at  the relevant place. 

(A) Symmetric wedge 

Consider the cavity flow past a symmetrical wedge of half vertex angle /3n as 
shown in figure 3 (a). The limiting case of infinite cavity at v = 0 is known as 
Bobyleff's problem; and the problem with arbitrary v has been worked out with 
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various cavity models, e.g. with Riabouchinsky's model by Plesset & Shaffer 
(1948a,b), and Perry (1952), and with the wake model of Joukowskyand Roshko 
by Roshko (1954). The method given here is essentially not different from that of 

Y 

f 

Y 

D 

Y 

C 

(4 

Roshko who presented the numerical result for one case pm = 45". We derive 
here the final result in a closed form and present numerical values in a wider 
range. 

FIGURE 3. The co-ordinate systems and notations for specific cases. 

By symmetry it is obvious that 
w = ei*PtW. ( 5 7 )  

(58)  

At z = 00, w = U ,  hence 
to = - i V' = U W  = (1 + g)-1/4P. 

6 Fluid Mech. 18 
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consequently, from (10) 

The physical plane is therefore 
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f = AtZ(t2 + V2)-l (t2 + V-’)-’, 

Let the length of one wedge face be 1, then 

From (48), (50)  we readily deduce that L = 0 and 

D = npPA Vz(  1 - V4)-’ (77-l - U ) .  

The drag coefficient based on the wedge base b = 21 sin@- is therefore 

D C,(u;P) = - - 

As o + O ,  both U and V tend to unity, and we find the following asymptotic 
behaviour 

where 

which can be expressed in terms of the logarithmic derivative of the I?-function. 
The above result for C, is computed and shown in figure 4 versus the cavitation 

number ofor anumber of the vertex angles pn. The present theory is found to be in 
good agreement with the experimental results of Waid (1957) and of Cox & 
Clayden (1958). 

(B) Two-step symmetric wedge 

Let us consider the cavity flow past a two-step symmetrical wedge with the 
inclination equal to pn and (p+ y ) n  on the first and second leg respectively 
(0 < /3 < 1, 0 < @+y) < 1, see figure 3 ( b ) ) ,  the flow being again symmetric 
about the x-axis and the imaginary t-axis. Let t = & T correspond to the inter- 
mediate vertices, then 

A t z = o o , w =  Uandt ,=- iV,O< V <  1,hence 

w = eiTfltW(t2 - 7 2 ) ) ~  ( 7 2 t 2 -  l ) - ~ .  (65 )  

p = ( V 2 + T 2 ) / ( 1 + T 2 V 2 ) ,  p (U/V2fl)”Y. (66a) 

7 2  = (p- V2)/(l-pV2), or V2 = ( p - ~ ~ ) / ( l - p ~ ~ ) .  (66b) 

This equation may also be written 

Since 0 < T~ < 1 and 0 < V2 < 1, we deduce from (66 b )  that (i) V 2  < p < 1 and 
(ii) T~ < p < 1. From (i) it  immediately follows that 

UliW 2 J‘ 2 U~ILW+Y)I for y 0. ( 6 7 )  
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(When y is negative, IyI is taken to be small compared with p.) This inequality 
gives the range of ?' for prescribed U = (1 + r)-h, and p, y. The inequality (ii) 
then provides an upper bound for 72.  

2 O  c 
1.5 

c, 1.0 

0 5  

I I I I I I I I I I 

0 0.2 0.4 06 0.8 1 
U 

I 

FIGURE 4. Variation of CD with the cavitation number cr for symmetric wedges. Waid's 
data: /h = 5", iJ; 15", ; go", a; the solid symbols represent the corresponding 
data obtained when the cavity was filled with a mixture of water and gas bubbles. Cox 
& Clayden data: /% = 15", 30°, 45", B O O ,  9O", all represented by 0. 

; 45", 

The physical plane is given by 

where 

Let I, and 1, be the lengths of the segment DP, and PI A ,  then 
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The width of the wedge base is 
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lAB = 2[Z1sinp77+1,sin(p+y)7r] = 4AF(7, V ) ,  (70a,) 

For given p, y,  g, 12/11,  the parameters V and r can be determined from (66a) and 
(69). If use is made of ( 6 6 b )  in expressing 7 = I-( V ) ,  one can compute V directly 
from (69) as a function of p, y ,  g, Z2/Zl. 

u = 1.0 

0.8 

I I I I 
0.2 0.4 0.6 0.8 I 

W I  + 1 2 )  

FIGVRE 5 .  Variation of C, with 1,/(11 + I , )  at  several values of the cavitation 
number IT for the two-stepped wedge with Pn = yn = 30". 
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Finally, application of (50) to this case gives L = 0, and 
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Therefore the drag coefficient based on the base width is 

1.8 

1.6 

1.4 

1.2 

1.0 

CD 

0.8 

0.6 

0.4 

0.2 

0 

/ 0.2 

0.1 

0.01 

I I 1 1 1 1 1 1 1 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

I d ( 4  + 1 2 )  

FIGURE 6. Variation of CD with 12/ (11  + I , )  at several values of the cavitation 
number u for the two-stepped wedge with / 3 ~  =  TI = 45". 
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A very straightforward scheme is adopted for the numerical computation in 
this case. For prescribed cavitation number v (and hence U ) ,  a set of values of V 
are chosen within the region of (67), each of which then gives a fixed r by (666). 
The ratio 12/11 can therefore be calculated from (69) as a function of ( U ,  V ;  p, y )  

0.2 

0 
I 
* 0.8 - 
2 0.1 
Y 
uQ 
v 

0.6 - 

1.6 - 

1.4 0.4 - 

Waid's data 
bla = 8 /(b/a = 0.674) 

@26 
k0.5 0.1 

0.05 

0,025 
/b/a = 0 

- 

I 

0.4 

0.2 

U 

- 

U - ---A- 

- 

I I I I I A ,  
0 0.1 0.2 0.3 0.4 0.5 V a ,  

bla 

FIGURE 7. Variation of C D  with b/a at several values of u for the rectangular cup (or with 
/?n = yn = 90'). Waid's data for bla = 0.674 are compared with the theory in the inserted 
figure. 
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from which readily follows the result for C, given by (72) .  No further elabora- 
tion is needed here as the numerical work involved is rather simple. The drag 
coefficient C, is shown versus 12/(11 + 12)  with fixed values of in figures 5-7 for 
three special cases: /3n = yn = 30°, 45" and 90". The last case has also been con- 
sidered by Plesset & Perry (1954).  The agreement between the present theory 
and the experiment of Waid (1957) may be regarded as good, as shown in an 
inserted cross-plot of figure 7 .  The result that Waid's data are all slightly higher 
than the theory for b /a  = 00 (for which case the flow is almost all stagnant inside 
the cup) may be due to the intrinsic feature of this flow model, or the wall effect 
which was not accounted for originally. 

(C)  Plat plate with a jlap 

As the simplest case of a polygonal obstacle in an asymmetrical flow we consider 
a flat plate AP, with an extended flap P,B held at a flap angle € 7 ~  which will be 
taken positive here (see figure 3(c)). With the x-axis taken along AP,, we have 

(73) 

(74) 

W = t(t - 7)E (7t - I ) - ' ,  

to = U e-ia( 1 -do)" (r -to)-'. 

where t = r is the image of the point Pl. At x = m, w = Ue-ia, t = to, hence 

From this equation it is readily seen that U < It,[ < 1 (or see ( 1 3 a ) ) .  . .  
The physical plane is given by 

T t - 1  ' 
z ( t )  = 2 A S f  -1 (-) t--7 g( t ; to)dt ,  

(75b) 
1 df ( 1  - t 2 )  [ 1 +  t 2 -  it@,+ f,) ( 1  + t - l f - l ) ]  0 0  

2At at ( t - t , ) 2 ( t - f o ) 2 ( t - t ; 1 ) 2 ( t - f ; 1 ) 2  * 
where g ( t ;  to) = __ - = 

Let C and f* be respectively the unflapped chord and the flap length. Then 

For convenience of computation, (76)  can be written, by change of variables, 

where 7-u r+u 
t,(u;7) = - t 2 ( U ; T )  = - 1 -ru' 1 +ru' 

Finally, we derive from (50) for this case the lift and drag as 
7rpA ( u-1 + U )  csc a. 

2( v-2 + v2 - 2 cos Za,) 
L = 

) (78a)  
( 1  - 7 2 )  [( 1 + 7 2 )  v2cos a, - 7 V (  1 + VZ) 00s 2@,] 
( 8 2  + 7 2 -  2 vr cos a,) (1 + 7 3 7 2 -  2 vr COB a,) 

x cosao+E ' 

npA(U-1- U ) / ( l -  VZ) 
2( v-2 + v2 - 2 cos Za,) D =  

) '  (78b)  
( 1  - 7 2 )  [( 1 + 7 2 )  VZ( 1 + VZ) - 27 V (  1 + V4) cos a,] 

( P  + 7 2  - i 77 cos a,) ( 1  + v2r2 - 2 vr cos a,) 
where to = Ve-iao. 
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Equations (74) and (76 )  are two equations for to and 7 which can be solved 
numerically €or prescribed U ,  a,  e and f*/c. In  the numerical computation the 
following different schemes have been adopted. The very nature of this special 
problem permits a combined use of iteration and the inverse problem calculation. 
If we choose U ,  a, B and 7 as the independent parameters (which are a mixture of 
the physical and inverse parameters), then to can be obtained from (74) by 
iteration?, 

66“) = Ue-ia,(t(n-l). (79Q) 

where F(to; 7, B )  = (1 -do)€ (7 -to)-€, (79b) 

, ~ , e )  for n = 1 , 2  ,..., 

1.6 
f/c = 0 2  

I I I I I 
0 0.2 0.4 0.6 0.8 

0- 

(4 

0.7 I fic = 0.2 

1 I I I I 1 

1 0  0.2 04 0.6 0.8 1.0 
G 

( b )  

FIGURE 8. Variation of CL and Co with CT for a flat plate at incidence a = lo”, with a flap 
of flap-chord ratioflc = 0.2 and held a t  flap deflexion m. 

and tho) may be chosen to be Ue-ia. This computation was programmed for an 
IBM7090 electronic computer, and the iteration executed until an error of 
Itp) -thn-l)l < 0.0001 is obtained. The convergence of this iteration is found to be 
very fast. With a series of 7 chosen in - 1 < r < 1, and with to so determined, the 
remaining parameter f*/c can then be determined readily from (76) or (77), and 
thelift and drag from (78). The accuracy of f*/c and L, D depend on the tp’ used 
in the calculation, but otherwise their errors have not been explicitly deter- 
mined by using two consecutive values of ti”). The numerical results of C, and C, 
(based on the chord c )  are first plotted versusf*/c (with the * deleted) for a set of 
values of cr and en-. From these figures the variation of C, and CD with can be 
obtained by cross-plotting, a typical case of f/c = 0.2 being given in figure 8. The 

The iteration method is used here for the purpose of testing the rate of convergence. 
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special case of this problem with CT = 0 has recently been treated by Lin (1961) 
using Levi-Civita's method. The corresponding numerical results of these two 
cases are found to be in perfect agreement. 

1.4 

1.2 

1.0 

0.8 

CL 

0.6 

0.4 

0.2 

0 

Parkin data 
o a = l O "  

20" 
V 25" 
0 30" 

A 15" 

I I I I 1 1 1 1 1 

0.1 0.2 0.3 0 4  0.5 0.6 0.7 0.8 0.9 I 
U 

FIGURE 9. Variation of CL with CT for a circular arc hydrofoil a t  incidence a. 

It is easy to see that the above method (with rk chosen in order to calculate Zk) 
soon becomes impractically complicated with further increase in the number of 
polygonal faces. For the purpose of comparison, this problem has also been 
calculated by applying the general integral iteration method as described in 3 5.1 
which has been carried out on the IBM 7090 computer. It has been found that to 
obtain the same accuracy, the computer time for the integral iteration method is 
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considerably more than that for the method mentioned above. It is felt, however, 
that the integral iteration method will likely be more advantageous and time- 
saving when there are more than two consecutive flaps. 

Parkin data 
o a = 10" 

A 15" 
El 20" 
v 25" 
0 30" 

y 
I I I I I 1 I I I 

0 0.1 0-2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
U 

FIGVRE 10. Variation of CD with u for a circular-arc hydrofoil at incidence a. 

(D) Circular-arc hydrofoil 

As an example of the general profile with continuously varying inclination, we 
consider the circular-arc hydrofoil with radius R and arc length 2yR  so that the 
arc angle is 2y (see figure 9). The inclination /3 is a linear function of s 

P(s) = y-  (s/R), 0 < s < 2yR. ( 80) 
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The problem has previously been treated by Wu (1956 a )  adopting the wake 
model of Joukowsky and Roshko and using Levi-Civita's method in an approxi- 
mate manner such that the series expansion is truncated and the boundary 
conditions on the inclination and curvature are satisfied only at the end points. 
The numerical work was carried out for y = 8" and the results compared with the 
experiments of Parkin (1956). The case of small y has also been considered by 
Wu (1956 b )  as an example of the generalization of Tulin's linearized theory (1955) 
These two linear and non-linear theories have been compared for the case 
y = 8" (see Wu 1956b). 

In  order to compare the present cavity flow theory and the associated compu- 
tational program with the previous non-linear theory (Wu 1956 a), the numerical 
work of this problem has been carried out for y = 8O, using the integral iteration 
method of 0 5.1 on an IBM 7090 computer. In  the computer program used in this 
case the conventional averaged-iteration process is employed. The iteration 
process is executed until the errors I Vn)- V("-l)l and lap) - CX~"-~) I  are both less 
than 0.0001. The convergence of the iteration is considered to be very satis- 
factory. The resulting CL and CD (based on chord length lAB = 2Rsiny) are 
shown versus CT in figures 9 and 10, in which Parkin's experimenta1 data (1956) 
are included for comparison. The CD is found to be virtually identical with the 
previous approximate theory (Wu 1956a), whereas CL of the present theory is 
slightly greater than the previous one for moderate values of (T. 

This work was supported by the U.S. Office of Naval Research under Contract 
Nonr 220 (35). 
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Appendix 
We present here an alternative derivation of the result w = w(t) given by 

equation ( 2 3 )  in the text. 
The boundary problem of the analytic function w = i log w = 6 + ih, which is 

defined in the upper half {-plane (see (7) and figure l), may be expressed in terms 
of { = $+ill as I m o  = h = 0 for 7 = 0, 161 < 1, 

Rew = 8 = P ( s )  for 7 = 0,  6 > 1, 
(A 1) 

= n+P(s) for 7 = 0, [ < -1 .  (A 2 )  

Here, t)he function /3(s), defined by (21 b ) ,  is assumed to be a known function of 6. 
By virtue of (A 1) w can be continued analytically into the lower half <-plane by 
Schwarz’s principle of reflexion __ 

We shall adopt the notation &($) = &(g)+ih*([) to signify the limit of w as 
T-+ 0, respectively. Then from (A3) it follows that 8+ = 8-, A+ = -A-. Thus, 
the original problem given by (A 1)  and (A 2 )  may also be posed as the following 
Hilbert problem 

w(S) = 45) .  ( A 4  3) 

w+ - w- = 2iA+ = 0 for 161 < 1 ;  (A 4) 

= 2[n+f(s (6) )]  for [ < - 1.  (A 5 )  

w++w- = 28+ = 2/3(s([)) for 6 > 1, 

The general solution of this Hilbert problem can be written (see, for example, 
Muskhelishvili: Singular Integral Equations ( I  953), pp. 235-8) 
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where a({) = i(C2- 1)$, defined with a branch cut from -co to - 1 and from 
1 to co so that Q+i{ as J{l -+a, 0 < arg 5 < n-, is a solution of the corresponding 
homogeneous Hilbert problem, and where Cl, are arbitrary real coefficients. The 
solution can be determined uniquely only when the singular behaviour of o is 
completely specified. For this problem we note that (i) IwI < co along. the free 
boundary, 7 = 0, 1 [ I  < 1, and (ii) w + 0 (log 5) as 151 -+ co, the stagnation point. 
From these conditions it follows that C, = 0 for all n. Consequently (A 6) reduces 
to the form (23) upon transformation to the t-plane by using (8). 




